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The electronic spin-orbit coupling in carbon nanotubes is strongly enhanced by the curvature of the tube
surface and has important effects on the single-particle spectrum. Here, we include the full spin-orbit interac-
tion in the formulation of the effective low-energy theory for interacting electrons in metallic single-wall
carbon nanotubes and study its consequences. The resulting theory is a four-channel Luttinger liquid, where
spin and charge modes are mixed. We show that the analytic structure of the spectral function is strongly
affected by this mixing, which can provide an experimental signature of the spin-orbit interaction.
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Spin-orbit interaction �SOI� effects1 are of great interest in
the field of spintronics, and their detailed understanding is
both of fundamental and of technological interest, e.g., for
the coherent manipulation of spin qubits.2 In single-wall car-
bon nanotubes �SWNTs� the SOI arises predominantly from
the interplay of atomic SO coupling and curvature-induced
hybridization, and its effect on the electronic band structure
has recently been clarified.3–11 Contrary to other carbon-
based materials, as, e.g., flat graphene, where SOI is very
weak �on the order of few microelectron volt�, in SWNTs it
can reach fractions of millielectron volt and has important
consequences, previously overlooked. New experiments12,13

on ultraclean SWNTs, made possible by advances in the fab-
rication technology, have indeed observed modifications of
the electronic spectrum due to SOI. These results confirm the
theoretical expectations and motivate renewed interest on
SOI in nanotubes. So far on the theory side the main focus
has been on nanotube quantum dots,14 where the SOI mani-
fests itself in spectral features. Here we study long SWNTs,
where long-ranged interactions can induce non-Fermi-liquid
electronic phases.15 In particular, without SOI, Luttinger liq-
uid �LL� behavior16 has been predicted for metallic
SWNTs.17 Experimental evidence for this strongly correlated
phase has been reported using quantum transport18 and pho-
toemission spectroscopy.19

The question therefore arises how the LL theory of
SWNTs �Refs. 17� is modified when the SOI is taken into
account, and what are its observable consequences. This
question is addressed and answered in detail below. Our
main results are as follows. �i� The low-energy theory of
metallic SWNTs still describes a Luttinger liquid. However,
the decoupled plasmon modes do not correspond to spin and
charge anymore. Spin-charge separation in the usual sense16

is therefore broken by the SOI. This effect can be traced back
to a term in the SO Hamiltonian diagonal in sublattice space
�see Eq. �1��, which was previously overlooked. �ii� We dis-
cuss in detail the spectral function, a quantity that can di-
rectly be probed experimentally for SWNTs.19 We show how
the mixing of spin and charge modes due to SOI affects its
analytic structure and modifies it from the established spinful
LL behavior.16,20 The predicted deviations are small but
should be observable. �iii� The tunneling density of states,
and hence most typical quantum transport observables, is
only weakly affected by the SOI. This may explain why the

SOI in SWNTs has long been overlooked. �iv� We shall
clarify the similarities and the differences of the present
SWNT theory to the LL description of one-dimensional �1D�
interacting semiconductor wires with Rashba SOI.21–27

To start, let us address the band structure of a nominally
metallic �n ,m� SWNT, where 2n+m�3Z. The chiral angle15

is �=tan−1��3m / �2n+m��, and the tube radius is R�nm�
�0.0391�n2+nm+m2. We employ the effective SO Hamil-
tonian for � electrons derived in Ref. 11 in the k ·p scheme.
This model is in semiquantitative accordance with available
experimental Coulomb blockade spectroscopy data12 and
summarizes earlier theoretical work. In particular, it includes
the recently discovered “diagonal” contribution ESO, which
is of crucial importance in our analysis �see below�. Within
this framework, the single-particle Hamiltonian H0�k� for
wave vector k= �k ,k�� relative to the respective K point is a
2�2 matrix in sublattice space corresponding to the two
basis atoms of the honeycomb lattice. This separately applies
to both K points �=� and both spin directions �=�, where
the spin-quantization axis is along the tube axis. To leading
order in the SOI, the spin label � is still a good quantum
number.3,4,8 Periodic boundary conditions around the SWNT
circumference imply a quantization of transverse momen-
tum, k�R=n0�Z. We assume a Fermi energy EF�0 but
sufficiently small to justify that only the n0=0 band has to be
retained. All other bands are then separated by an energy gap
��vF /R�1 eV, where vF�8�105 m /s. Then, H0�k� is
given by11

� ��ESO − ��vF�	� + i�k + �		��
− ��vF�	� − i�k + �		�� ��ESO


 .

�1�

This form neglects trigonal warping corrections,15 which
cause only tiny changes in the low-energy physics but would
complicate our analysis substantially. Using the parameter
estimates of Ref. 11, the diagonal term is

ESO�meV� � −
0.135 cos�3��

R�nm�
. �2�

Writing 	�=	�,SO+	�,cur, the SOI corresponds to a spin-
dependent shift of the transverse momentum,8,11,12
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	�,SO�nm−1� � ��
2.7 � 10−4

R�nm�
�3�

while curvature effects11,15 give

	�,cur�nm−1� �
0.011 cos�3��

�R�nm��2 ,

		�nm−1� �
0.045 sin�3��

�R�nm��2 .

We remark that Hamiltonian �1� contains the two leading
effects of curvature-induced SOI, namely, the diagonal con-
tribution ESO and the Rashba-type SOI encoded by 	�,SO.
Subleading terms, e.g., the “intrinsic” SOI,8 are much
smaller and not taken into account here. The dispersion rela-
tion obtained from Eq. �1� is

E�
��,���k� = ��ESO � �vF

�	�
2 + �k + �		�2, �4�

where the Kramers degeneracy is reflected in E�
��,���k�

=E�
�−�,−���−k�. Since EF�0, only the conduction bands

�positive sign� are kept, and the Fermi momenta kr��
�F� for

right and left movers �r=R /L=�� follow from E+
��,���kr��

�F� �
=EF, kr��

�F� �r�EF−��ESO� /�vF−�		. We linearize the dis-
persion relation around the Fermi points, always assuming
that EF is sufficiently far away from the band bottom. The
1D Fermi velocities v�,�=�−1�kE+

��,���k=k+,��
�F� � take only two

different values, vA�v−,↑=v+,↓ and vB�v+,↑=v−,↓. We men-
tion in passing that R /L movers have pairwise identical ve-
locities only in the absence of trigonal warping and orbital
magnetic fields28 or transverse fields,29 as assumed here. It is
convenient to introduce the mean velocity v= �vA+vB� /2 and
the dimensionless difference 
= �vA−vB� / �2v�. After some
algebra, Eq. �4� together with the parameter estimates above
yields

v
vF

� 1 −
0.01�R�nm��2 + 17 cos2�3��

�EF�meV��2�R�nm��4 ,


 �
0.83 cos�3��

�EF�meV��2�R�nm��3 . �5�

The renormalization of v away from vF goes always down-
ward but the quantitative shift is small. The asymmetry pa-
rameter 
 effectively parametrizes the SOI strength and is
more important in what follows. For fixed EF and R, it is
maximal for �=0 �zigzag tube� and vanishes for �=� /6
�armchair tube�. Moreover, 
 increases for smaller tube ra-
dius but the continuum description underlying our approach
eventually breaks down for R�0.4 nm. Since EF should at
the same time be sufficiently far above the band bottom in
Eq. �4�, in practice this leads to rather small values, 

�0.05. This is a rather conservative estimate, though, based
on the parameter values of Ref. 11 and larger values could be
obtained if one uses different estimates. Nonetheless, we
show below that observable consequences do arise.

The theory is then equivalently formulated using Abelian
bosonization,16 which allows for the nonperturbative inclu-
sion of interactions. We employ the boson fields 	��x� with

�=c+ ,c− ,s+ ,s−, representing the total and relative charge
and spin-density modes,17 and their conjugate momentum
fields ���x�=−�x��, where �� are the dual fields. Those
fields are conveniently combined into the vectors I�x�
= �	c+ ,�c+ ,	s− ,�s−�T and 0�x�= �	c− ,�c− ,	s+ ,�s+�T. The
important electron-electron forward scattering30 effects are
parametrized by the standard LL parameter K�Kc+, where
K=1 for noninteracting electrons but K�0.2. . .0.4 for
SWNTs deposited on insulating substrates �or for suspended
SWNTs� due to the long-ranged Coulomb interaction.17–19

The low-energy Hamiltonian of a spin-orbit-coupled interact-
ing metallic SWNT then reads

H =
�v
2
� dx��xI

�x0

T�h�K� 0

0 h�1�

��xI

�x0

 �6�

with the K-dependent matrix

h�K� =
1

K2 0 
 0

0 1 0 



 0 1 0

0 
 0 1
� .

The above representation shows that SOI �
�0� breaks spin
SU�2� symmetry. Notably, the modes I and 0 decouple,
and interactions �K�1� only affect the I sector. In each
sector, the Hamiltonian is then formally identical to the one
for a semiconductor wire with Rashba SOI in the absence of
backscattering.27 We consider a very long SWNT and ignore
finite-length effects, i.e., the zero modes contributions to
Hamiltonian �6�.

Equation �6� can be diagonalized by the linear
transformation31 I=VIa and 0=V0b with the 4�4 ma-
trix

VI =
cos � 0 −

sin �

y
0

0 cos � 0 − y sin �

y sin � 0 cos � 0

0
sin �

y
0 cos �

� , �7�

where

y = ��1 + K−2�/2, tan�2�� =
2
y

y2 − 1
. �8�

V0 is as in Eq. �7� with K=1, i.e., y=1 and �=� /4. In terms
of the new vectors �= �	+,� ,�+,� ,	−,� ,�−,��T with mutually
dual boson fields 	 j� and � j� for each set �j= � , �=a /b�,
the diagonalized Hamiltonian is seen to describe a four-
channel Luttinger liquid,

H = �
j,�

�v j�

2
� dx� 1

Kj�
��x	 j��2 + Kj���x� j��2� . �9�

The interacting sector corresponds to �=a, where the effec-
tive LL parameters K�,a and the plasmon velocities v�,a are
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K�,a = y�1� 3 + K−2 � �

3K−2 + 1 � �
,

v�,a

v
= �y2 + 
2 � �/2,

� = ��K−2 − 1�2 + �4
y�2 �10�

with y in Eq. �8�. For �=b, the noninteracting values apply,
K�,b=1 and v�,b=v�1�
�. Note that the above expressions
recover the LL theory for 
=0,17 where v j�=vF /Kj� with
Kj�=1 except for K+,a=K.

Within the framework of the LL Hamiltonian �9�, using
the bosonized form of the electron field operator16,17

�r���x , t� and the transformation Eq. �7�, it is possible to
obtain exact results for all observables of interest. In particu-
lar, arbitrary correlation functions of exponentials of the bo-
son fields can be calculated. As an important application, we
discuss here the spectral function for an r=R /L moving elec-
tron with spin � near the K point �=�, which is defined as

Ar���q,�� = −
1

�
Im Gr��

ret �q,�� �11�

with the Fourier transform of the single-particle-retarded
Green’s function �� is the Heaviside function�,

Gr��
ret �x,t� = − i��t����r���x,t��r��

† �0,0�� + c.c.�

and the momentum q is measured with respect to the relative
Fermi momentum kr��

�F� .
After some algebra, Eq. �11� follows in closed form,

which we specify in the zero-temperature limit now. With the
short-distance cutoff �lattice spacing� a0�0.246 nm, we find

Ar���q,�� � �
−�

�

dx�
−�

�

dte−i�qx−�t�

���
j,�

�
�=�

�1 + i
v j�t + �rx

a0

−�j,�;�

����

+ �x,t� → �− x,− t�� , �12�

where the exponents for j=� and �=� are given by �see
also Eq. �8��

� j,a;�
���� =

1

16
�cos����Kj,a

1/2 − �Kj,a
−1/2�

+ ��j sin����yjKj,a
1/2 − �y−jKj,a

−1/2��2,

� j,b;�
���� =

1

2

 j,��
�,−. �13�

The remaining Fourier integrals are difficult to perform. We
here follow Ref. 16 and focus on the analytic structure of the
spectral function, which can be obtained by the power count-
ing technique and Jordan’s lemma. Up to an overall prefac-
tor, the spectral function exhibits power-law singularities

close to the lines �= �v j�q. These singularities are captured
by the approximate form

Ar���q,�� � ��
j,�

�� + �rv j,aq��
����−1−�j,a;�

���� 

��� − r�1 + ��
�vq��

����−3/2

����� − rv̄q� + ��− � − rv−aq�� , �14�

where v̄=min�v−,a , �1+��
�v� and

����� = �
j��

� j��
����. �15�

We stress that Eq. �14� is asymptotically exact: it has the
same analytic structure and the same exponents of the power
laws at the singular lines �= �v j�q as the exact spectral
function. Away from the singularities, however, it only
serves illustrative purposes.

The spectral function Eq. �14� is depicted in the main
panel of Fig. 1 for fixed wave vector q�0 as a function of
frequency �, taking K=0.4 and 
=0.05. Compared to the
well-known spectral function in the absence of SOI �
=0�,
see left inset of Fig. 1 and Refs. 16 and 20, additional struc-
ture can be observed for 
�0. First, the singular feature
around �=v−,aq splits into two different power-law singu-
larities when 
�0, see the right inset of Fig. 1 for a magni-
fied view. For large q, the corresponding frequency differ-
ences are in the millielectron volt regime and can be resolved
even for the rather small 
 expected here. Second, for
−v+,aq���−v−,aq, the spectral function is finite �albeit
small� when 
�0. Note that for 
=0, the respective veloci-
ties are v+,a=vF /K and v−,a=vF, implying a large frequency
window where this effect may take place. These predictions
for the spectral function could be detected by photoemission
spectroscopy.

-v
+,a

q -v
-,a

q v
-,a

q v
+,a

q
ω

A(ω)

- qv
F
/K qv

F qv
F
/K

v(1-δ)q v(1+δ)q

v
-,a

q

0

0

FIG. 1. �Color online� Spectral function Eq. �14� for a right
mover in an interacting SWNT with LL parameter K=0.4 and SOI
parameter 
=0.05, shown in arbitrary units as function of � for
given wave vector q�0. The black solid curve is for ��=+1 while
the red dashed curve is for ��=−. Note that AR���q ,��=0 for
−v−,aq��� v̄q. Right inset: magnified view around ��v−,aq. Left
inset: same as main panel but without SOI �
=0�. Shifts of the
positions of the singularities due to the shifts of Fermi momenta are
not included in the figure since each spectral function Ar���q ,�� is
evaluated at momentum q relative to the respective Fermi
momentum.
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Many standard quantum transport properties, however,
will hardly show an effect due to the SOI. For instance, the
tunneling density of states averaged over �r ,� ,�� exhibits
power-law scaling with � for low frequencies, �������−1.
The exponent � is the smaller of the quantities ���� in Eq.
�15�. This exponent is analytic in 
, and the smallness of 

then implies that the tunneling density of states in SWNTs
will be very close to the one in the absence of SOI. Let us
also briefly comment on the relation of our results to the LL
theory for semiconductor quantum wires with Rashba
SOI.21–27 The “interacting” sector �=a in Eq. �9� coincides
with the semiconductor theory when electron-electron back-
scattering can be neglected. The additional presence of the
“noninteracting” sector �=b, however, causes additional
structure in the spectral function. Moreover, while back-
scattering in semiconductor wires is likely an irrelevant per-

turbation in the renormalization-group sense,27 it nonetheless
causes a renormalization of the LL parameters and the plas-
mon velocities. Such renormalization effects are negligible in
SWNTs.

To conclude, we have studied SOI effects on the effective
low-energy theory of interacting metallic SWNTs. We have
shown that a four-channel Luttinger liquid theory remains
applicable, but compared to the previous formulation without
SOI,17 all four channels are now characterized by different
Luttinger liquid parameters and plasmon velocities, reflect-
ing the broken-spin SU�2� symmetry. The coupling of spin
and charge modes leads then to observable modifications in
the spectral function, which provide an experimental signa-
ture of SOI.
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